Non-iterative, regression-based estimation of haplotype associations with censored survival outcomes.
نویسندگان
چکیده
The general availability of reliable and affordable genotyping technology has enabled genetic association studies to move beyond small case-control studies to large prospective studies. For prospective studies, genetic information can be integrated into the analysis via haplotypes, with focus on their association with a censored survival outcome. We develop non-iterative, regression-based methods to estimate associations between common haplotypes and a censored survival outcome in large cohort studies. Our non-iterative methods--weighted estimation and weighted haplotype combination--are both based on the Cox regression model, but differ in how the imputed haplotypes are integrated into the model. Our approaches enable haplotype imputation to be performed once as a simple data-processing step, and thus avoid implementation based on sophisticated algorithms that iterate between haplotype imputation and risk estimation. We show that non-iterative weighted estimation and weighted haplotype combination provide valid tests for genetic associations and reliable estimates of moderate associations between common haplotypes and a censored survival outcome, and are straightforward to implement in standard statistical software. We apply the methods to an analysis of HSPB7-CLCNKA haplotypes and risk of adverse outcomes in a prospective cohort study of outpatients with chronic heart failure.
منابع مشابه
Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملRegularized Weighted Linear Regression for High-dimensional Censored Data
Survival analysis aims at modeling time to event data which occurs ubiquitously in many biomedical and healthcare applications. One of the critical challenges with modeling such survival data is the presence of censored outcomes which cannot be handled by standard regression models. In this paper, we propose a regularized linear regression model with weighted least-squares to handle the surviva...
متن کاملMaximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies.
The associations between haplotypes and disease phenotypes offer valuable clues about the genetic determinants of complex diseases. It is highly challenging to make statistical inferences about these associations because of the unknown gametic phase in genotype data. We describe a general likelihood-based approach to inferring haplotype-disease associations in studies of unrelated individuals. ...
متن کاملTree-based Multivariate Regression and Density Estimation with Right-censored Data
We propose a unified strategy for estimator construction, selection, and performance assessment in the presence of censoring. This approach is entirely driven by the choice of a loss function for the full (uncensored) data structure and can be stated in terms of the following three main steps. (1) First, define the parameter of interest as the minimizer of the expected loss, or risk, for a full...
متن کاملSimple Estimation Procedure for Censored Regression Models with Known Error Distribution
A simple and tractable iterative least squares estimation procedure for censored regression models with known error distributions is analyzed. It is found to be equivalent to a well-defined Huber type M-estimate. Under a regularity condition, the algorithm has excellent convergence properties. The resulting estimate is shown to be 4N-consistent and asymptotically normal. 'Statistics Department,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2012